Next Generation Manufacturing Manufacturing 2030

Engelbert Westkämper

with contributions from ISG ManuFuture

and 80 stakeholders

Manufuture Strategic Research Agenda (SRA)

The Paradigm and SRA fields are still relevant ... but need new orientations

From cost orientation to Consumer **Innovative Products** High Adding Value Goods by Emerging Competitive & Sectors **New Business Models** Sustainable **Development** European **Manufacturing Engineering** Production for.... System ... growth, jobs **Emergent Technologies** ... competition ... environment Capital **Infrastructure** Research for **Intensive Factories of the Future** Goods **Education Enabler Sectors**

Megatrends with Impact on Manufacturing

Ageing

- Future markets and products
- Human work and organisation

Individualism

- Individual and customised products
- Relation of human being and work conditions

Knowledge in the global ICT

- Knowledge driven Product-Development
- Optimisation of manufacturing processes
- IP and IT security

Globalisation

- Global process-standards in OEMs
- Products and manufacturing technologies for the global markets
- Local conditions and regulations
- Competition of locations

Urbanisation

- Environment, Mobility, Traffic, ...
- New products for mega-cities
- Work in mega-cities
- Factories in urban environment

Sustainability

Priorities for economic, ecologic, social efficiency of manufacturing

Finance

- Turbulences in finance of investment
- R&D and long term assets
- Economic cycles

Public debt

- Adding value Resilience
- Growth for employment
- Taxes, general conditions

Topics of the Strategic Innovation Agenda Innovative Knowledge **Products &** based **Manufacturing Processes Engineering** Volume Factory as good neighbor production Manufacturg back to in urban **Europe Environment Innovative Competitive & Technologies for** Sustainable **Manufacturing Development Next Factory and** Generation **Nature ICT** for Lean, Clean, **Factories** Green **Factories** New Business Models in the Infrastructure Life Cycle of & Education **Products**

New Business Models along the life cycle of products

Development and Implementation of a European Model (Reference Model)

- Robust and resilient
- Adding Value by knowledge based management
- Innovation culture for economic, ecologic, social efficiency
- Investment policy for sustainability
- compliance

Research for methods and technologies

- Methodologies for risk- and resilience management
- Service oriented engineering tools
- Life-Cycle Managementsystems for manufacturing
- Methodologies for diagnostics and maintenance

Development of Infrastructure and Education

- Regional synergies
- efficient technology transfer
- E-Education, E-Learning at work

Creating Innovative Products Increasing the creativity and efficiency of products by ... Implementation of New Materials / Nano's **Engineering** Weight reduction (dematerialisation) Competence ... for existing Markets Embedding of sensors / electronics New functionalities / technical intelligence **Implementation** of new Process-E-Mobility (E-Cars, Engines, Batteries, ...) **Technologies** Health (Medicine, Chemistry, ...), High skill, ... for emerging Markets Motivation Bio-Products, Food, Agricultural... Environmental Sectors, Energy, Water, ... Collaboration Cooperation Customised consumer goods... ... for low technologies Design oriented Products... Knowledge Parts, components.... based **Engineering** Factories Equipment (Basic Technologies) tools Photonic Machines, Light technonolgies ... for enablers Mechatronics, Embeddining Electronics Education Software for Products and Production

Grand Challenge: Dematerialisation of Products

- Reduction of the material-consumption by:
 - Light weight construction, multi-material design, joining technologies
 - Miniaturisation of dimensions (parts, components, products)
 - Intelligent engineering with specialised materials (function oriented)
 - Implementation of new technologies (Nano, Graphene etc.)
 - Integration of functions (adaptronic, sensors, actors)
 - Mechatronik components, Embedding electronics, MID
 - Reduced process chains (near net technologies)
 - Process capability (waste, scrap, defects etc.)
 - Recycling technologies, remanufacturing technologies
- ...is a contribution to reduce energy consumption

Continuous Innovation for Products and Processes

Engineering Materials

Implementation of New Technologies for Innovative Products
Processes, Machines, Systems

Embedding Electronics

Technologies for...

- High Performance
- High Speed, High Volume
- High Precision
- High Efficiency (Energy, Material)
- Technical Intelligence
- Human Interfaces
- Tools, Molds, Dies
- Transport, Storage

... Manufacturing Equipment

Equipment for Industrial Manufacturing of Emerging Products....

- Solar, Wind, etc. Environment
- all electric products......
- medicine products
- bio-products
- Health
- Tissue Manufacturing
- Food
- ... emerging Sectors

Knowledge based Manufacturing Engineering

Increasing the quality and efficiency of manufacturing engineering

Customised Scientific based **Manufacturing Solutions Process Models Manufacturing Engineering** Digital and virtual Product Engineering, **Process** Flexibility for Process planning **Technologies** turbulent Markets and Process control beyond limits with learning elements and In situ-Process-Simulation 00 Remote **Manufacturing** Intelligent Machines SCHAUDT Variancy Zero-Defects Flexibility and **High Performance** High energetic efficiency

The 4 major topics for emerging Manufacturing

grand challenges JOBS, INDUSTRIAL COMPETITIVENESS, SUSTAINABILITY

Manufacturing in urban environment & mega cities

- sustainable consumption and production
- sustainable mobility
- emergent technologies

Factory and nature lean, clean, green factories

- energy and material saving
- renewable energy

Volume production back

- "jobs, jobs, jobs"
- "adding value "
- with engineering competence

Next generation ICT for manufacturing

- aging society
- enabling technology for grand challenges

Manufacturing in urban environment & mega cities

- Products: customized technical consumer goods, design oriented products, configurable/modular construction
- Key-Technologies:
 - Emotional manufacturing
 - Zero Emissions of processes and factories: Noise, Air, Fluids, Waste....
 - Short Process chains, integration of processes
 - Desktop Machines: small, medium dimensions
 - Intelligent green logistics
 - Digital products digital factories
 - Human centered workplaces
 - Tele working
- Factory layout: flexible, open, integrated, lowest floor space
- Production System: human centered, flexible hours of work, event-driven organization

Factory and Nature - The Green Factory: Lean, Clean, Green Total **Product** Zero **Energy-**Life Cycle **Emissions Efficiency** LCA Noise, Air,... Management **No Waste** Process.... **Technical** Intelligence -**Mechatronics Sustainable Processes** Demateriali-sation Carbon **Footprint** Management of Hazardous Remanufacturing Green **Substances** and Recycling Logistics

Page 14

Volume production (back) to Europe

- European Trendsetting: design oriented products, customized mass products
- Research focus: low-technologies
- Integration of the engineering chain from "design to manufacturing" and from "customer order to delivery
- Make use of flexible Automation and Technical Intelligence:
 - Lean, clean, green manufacturing
 - Integration of process knowledge in the machine control and monitoring systems
 - IT- support for technicians and workers, e-learning at work
 - On-line peripheral services: maintenance, process know how
- Human oriented interfaces for workers: in-situ simulation and visualization.
- products and work for low skilled labor, education and training with IT-Support
- Regional orientation: work conditions in line with the way of life, flexible time- and wage- systems

Manufacturing in the digital Age

Threats: ICT-Security, gap digital-real world, ICT costs, bureaucracy

Global ICT - Networks - Product Life-Cycle Management - real time IT

Opportunities: Tools for Engineers (soft Machines), IT-Services, Efficiency of Engineers

Research for ICT in Manufacturing - Priorities

- ICT is one of the most important Key-Technologies for Manufacturing
 - influences all business, engineering, production and service processes in the life cycle of technical products
 - but customized and flexible Workflow-Systems required
- Support the efficiency and IT-Tools for Engineers
 - Open Engineering Platform and integration to Product life Cycle Management for requirements of factories (link digital/real worlds)
 - Multiple knowledge based Engineering tools (Soft Machines)
- ICT Security Standards and Services for Manufacturer (Infrastructure)
 - global standards for global cooperation in manufacturing
 - IT-Services for manufacturing and especially for SMEs
- E-Learning at work

Challenges for Manufacturing Development

- Structural change to meet the grand societal challenges
- Renewing the fields of SRA: innovative products, new business models, knowledge based engineering
- Implementation of technologies to bring back mass production to Europe.
- Technologies to increase the efficiency of resources (energy, material) for green factories made in Europe
- Realize high efficient and zero emission manufacturing in urban environments
- Closing gaps "digital and real" and focus on IT-Engineering tools (soft machines)

internet based consultation

Integration of feedback to formulate Manufacturing 2030

The four major topics

prime focus of interest:

Volume production in Europe

Thank you for your attention